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Abstract

The peridynamic model of solid mechanics is a nonlocal theory con-
taining a length scale. It is based on direct interactions between points
in a continuum separated from each other by a finite distance. The
maximum interaction distance provides a length scale for the material
model. This paper addresses the question of whether the peridynamic
model for an elastic material reproduces the classical local model as
this length scale goes to zero. We show that if the motion, constitu-
tive model, and any nonhomogeneities are sufficiently smooth, then the
peridynamic stress tensor converges in this limit to a Piola-Kirchhoff
stress tensor that is a function only of the local deformation gradient
tensor, as in the classical theory. This limiting Piola-Kirchhoff stress
tensor field is differentiable, and its divergence represents the force
density due to internal forces. The limiting, or collapsed, stress-strain
model satisfies the conditions in the classical theory for angular mo-
mentum balance, isotropy, objectivity, and hyperelasticity, provided
the original peridynamic constitutive model satisfies the appropriate
conditions.

1



1 Introduction

The peridynamic model of solid mechanics [1, 2] has been proposed as a
way to model the deformation of bodies in which discontinuities, especially
cracks, occur spontaneously. The objective of the model is to replace the
classical continuum description, which assumes a smooth deformation, so
that the basic equations remain applicable even when singularites appear in
the deformation. This is in contrast to the classical approach, in which the
inability to evaluate the spatial derivatives on a crack leads to the need for
the special techniques of fracture mechanics.

In the peridynamic model, we imagine that any body-point x in the
reference configuration is acted upon by forces due to the deformation of
all the body-points x′ within some neighborhood of finite radius δ centered
at x. The radius δ is called the horizon, and the body-points within this
neighborhood of x in the reference configuration are called the family of x.
The vector x′ − x is called a bond. The interaction between any x′ and
x is expressed in terms of the force state at x at time t, which is written
T[x, t]. The force state is a function that associates with any bond x′ − x
a force density T[x, t]〈x′ − x〉 (per unit volume squared) acting on x. This
force density arises due to the internal forces generated by the deformation
of the family of x relative to x. (The bond on which T operates is written
in angle brackets to distinguish it from quantities that the force state itself
may depend on, such as x and t.) The physical interpretation of this type
of force density, and its relation to Newtonian mechanics, is discussed in the
next section.

The basic equations of the peridynamic model [2] include the equation
of motion,

ρ(x)ü(x, t) = Lu(x, t) + b(x, t) ∀x ∈ B, t ≥ 0, (1)

Lu(x, t) =
∫
B

{
T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉

}
dVx′ (2)

where B is the reference configuration of the body, ρ is the density in the
reference configuration, u is the displacement, and b is the body force den-
sity. The term Lu(x, t) is a functional of displacement that represents the
internal force density (per unit volume) that is exerted on x by other body-
points. Since T[x, t] depends only on the deformation of the family of x, we
assume that

|ξ| > δ =⇒ T〈ξ〉 = 0. (3)

Let y denote the motion of B in the usual sense; thus y(x, t) is the
deformed position at time t of the body-point x ∈ B. To express the de-
pendence of T[x, t] on the deformation of the family of x, we define the
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deformation state Y[x, t]. This is a function that associates with any bond
x′ − x the deformed image of the bond:

Y[x, t]〈x′ − x〉 = y(x′, t)− y(x, t)
= (x′ + u(x′, t))− (x + u(x, t)). (4)

The deformation state contains, in one package, the deformed images of
all the bonds in the family, which are in general infinite in number. Sim-
ilarly, the force state contains, in one package, the forces in all of these
bonds. In the peridynamic theory, a constitutive model is provided by a
relation between the deformation state and the force state. For a simple,
homogeneous body, this relation is expressed in the form

T = T̂(Y).

The essential idea of peridynamic constitutive modeling is that the force
transmitted through a given bond x′ − x depends on the totality of the
deformations of all the bonds as a whole, not just on the deformation of
the particular bond x′ − x. (The specialization of the model to the case
where each bond responds independently of the others is called bond-based
peridynamics; this was the original version of the theory proposed in [1].)

As mathematical objects, the force state T and the deformation state
Y are examples of peridynamic vector states, which are simply functions
that map bonds into some other vector quantity. In this sense, peridynamic
vector states are similar to second order tensors, but with the important
difference that the mapping may be nonlinear or even discontinuous. The
set of all vector states is denoted V. Some mathematical properties of states
are reviewed in Section 5.

The force state T[x, t] is analogous to a Piola-Kirchhoff stress tensor
σ(x, t), because it contains the totality of all internal forces acting on x
due to the material response at that body-point. Similarly, the deformation
state Y[x, t] is analogous to the deformation gradient tensor F(x, t).

An important constitutive model is the elastic peridynamic material,
defined by

T̂(Y) = ∇Ŵ (Y) ∀Y ∈ V (5)

where Ŵ : V → R is a differentiable (in the sense of Frechet derivatives)
scalar valued function called the strain energy density function. The peridy-
namic equation of motion (1), (2) can be obtained from the Euler-Lagrange
equation associated with the following Hamiltonian in an elastic peridynamic
body:

Hu =
∫ ∞

0

∫
B

(
Ŵ (Y[x, t])− ρu̇ · u̇

2
− b · u

)
dVx dt (6)
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Note that the interaction between two continuum body-points x and x′ in
(2) contains contributions from the force states at both x and x′. These force
states are independent of each other from the point of view of constitutive
modeling: T[x, t] depends only on Y[x, t], while T[x′, t] depends only on
Y[x′, t].

The remainder of this paper is organized as follows. Section 2 explains
the relation between the force densities in the peridynamic continuum model
and forces in the Newtonian mechanics of discrete particles. Section 3 con-
tains a general discussion of the role and significance of forces that act
through a finite distance in the peridynamic model and in applications.
Section 4 explains this paper’s objective of demonstrating that the classical
model is recovered from the peridynamic model in the limit of small interac-
tion distance for internal forces, under suitable restrictions. A brief review
of mathematical properties of peridynamic states is presented in Section 5.
These objects provide generalizations of second order tensors that allow all
the equations of the peridynamic model, including constitutive models, to
be expressed in a concise form. In Section 6 we summarize the properties
of the peridynamic stress tensor, which explicitly includes nonlocal interac-
tions across finite distances out to the horizon, but nevertheless provides a
bridge to the classical idea of the Piola-Kirchhoff stress tensor. Section 7
defines a family of elastic peridynamic materials whose horizon is variable
but whose bulk properties are invariant as the horizon is changed. In Sec-
tion 8 it is shown how this family of peridynamic materials converges in
the limit of small horizon to a Piola-Kirchhoff stress tensor that depends on
the motion only through the local deformation gradient tensor. It is proved
in Section 9 that this converged (or collapsed) stress tensor field has the
correct properties regarding the relation between its divergence and force
density. Properties of the collapsed stress tensor are discussed in Section 10,
which shows that the peridynamic conditions for angular momentum bal-
ance, isotropy, objectivity, and hyperelasticity carry over to the appropriate
classical notions in the limit of zero horizon. Finally, in Section 11, we briefly
discuss the implications of these results for jump conditions at interfaces.
This section also describes how a given stress tensor from the classical theory
can be included within the peridynamic framework; in particular we obtain
a force state corresponding to a statistically derived kinetic stress tensor.

2 Particles and peridynamic continua

In this paper, we use the term body-point to mean a point x in the reference
configuration of a continuous body that labels a certain bit of matter. A
body-point in this sense has zero mass, but a small subregion with volume
Vx surrounding x has a finite mass given by ρ(x)Vx, where ρ is the density
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function. We use the term discrete particle to mean a Newtonian particle
with finite mass M but zero volume.

These two terms, body-point and discrete particle, have meanings that
are closer to each other within the context of the peridynamic model than
within the classical theory. To explain this statement, we illustrate that
the peridynamic approach to continuum mechanics consists primarily of a
straightforward application of Newton’s second law to pairs of small volumes.
Let f denote the dual force density, defined by the integrand in the definition
of Lu in (2):

f(x′,x, t) = T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉 (7)

for any two body-points x and x′ in B; thus, according to (1),

ρ(x)ü(x, t) =
∫
B
f(x′,x, t) dVx′ + b(x, t). (8)

From (7), observe that

f(x,x′, t) = −f(x′,x, t). (9)

Let p and q be two body-points in a reference configuration. Suppose that
the body consists of two small disjoint regions Bp and Bq containing p and q
respectively, thus B = Bp∪Bq. Let Vp = vol(Bp) and Vq =vol(Bq). Assume
b ≡ 0 and that ρ and f are bounded and continuous. Integrating both sides
of (8) over Bp,∫

Bp

ρ(x)ü(x, t) dVx =
∫
Bp

(∫
Bp

+
∫
Bq

)
f(x′,x, t) dVx′ dVx. (10)

By virtue of (9), we have∫
Bp

∫
Bp

f(x′,x, t) dVx′ dVx =
∫
Bq

∫
Bq

f(x′,x, t) dVx′ dVx = 0, (11)

which states that each of the volumes exerts no net force on itself. Omit-
ting terms on the order o(Vp) and o(Vq), equation (10) can therefore be
approximated by

Mpü(p, t) ≈ Fqp (12)

where
Mp = ρ(p)Vp, Fqp = f(q,p, t)VqVp. (13)

The vector Fqp approximates the total force that Bq exerts on Bp, and Mp

approximates the total mass of Bp. Similarly,

Mqü(q, t) ≈ Fpq (14)
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where
Mq = ρ(q)Vq, Fpq = f(p,q, t)VpVq. (15)

The expressions (12) and (14) are simply approximate statements of New-
ton’s second law for discrete particles at p and q containing mass Mp and
Mq respectively. The approximations become exact as Bp and Bq become
infinitesimally small. Thus, in the peridynamic model, small volumes sur-
rounding any two body-points in a body behave like a pair of classical dis-
crete particles. Therefore, in view of (12) and (13), we can interpret f(q,p, t)
as “the force density per unit volume squared that q exerts on p.”

Observe from (9), the second of (13), and the second of (15) that Fpq =
−Fqp, which is consistent with Newton’s third law. More generally, it is
easy to show that linear momentum is conserved exactly for this system.
To see this, reverse the order of integration in the double integral

∫
Bp

∫
Bq

in
(10) and use (9) and (11) to show that

d

dt

∫
Bp

ρ(x)u̇(x, t) dVx =
∫
Bp

∫
Bq

f(x′,x, t) dVx′ dVx

=−
∫
Bp

∫
Bq

f(x,x′, t) dVx′ dVx

=−
∫
Bp

∫
Bq

f(x′,x, t) dVx dVx′

=−
∫
Bq

∫
Bp

f(x′,x, t) dVx′ dVx

=− d

dt

∫
Bq

ρ(x)u̇(x, t) dVx (16)

where the change of dummy variables x ↔ x′ is used in the third step. (16)
establishes that total linear momentum is conserved in B due to peridynamic
interactions.

An example of a dual force density function f is provided by a distribu-
tion of electrostatic charge within a large (nonconductive) body. Let Q(x)
denote the charge per unit volume in the reference configuration at any
body-point x. Then

f(x′,x, t) =
−Q(x′)Q(x)(y(x′, t)− y(x, t))

4πε0|y(x′, t)− y(x, t)|3
(17)

where ε0 is the permittivity of free space. In this example, the peridynamic
interaction does not have a finite horizon, i.e., δ = ∞. Equivalently, in
terms of the peridynamic force state,

T[x, t]〈ξ〉 =
−Q(x)Q(x + ξ)Y〈ξ〉

8πε0|Y〈ξ〉|3
, ξ = x′ − x. (18)
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A body composed of discrete particles (with finite mass but zero volume)
can be represented exactly as peridynamic body using generalized functions.
For example, suppose a set of discrete particles is given with reference posi-
tions Xi and masses Mi, i = 1, 2, . . . , N . Let the force exerted by particle j
on particle i at time t be denoted by Fji(t). Define a peridynamic body by

ρ(x) =
∑

i

Miδd(x−Xi)

f(x′,x, t) =
∑

i

∑
j 6=i

Fji(t)δd(x′ −Xj)δd(x−Xi) (19)

for all x, x′ in R3, where δd denotes the Dirac delta function in three di-
mensions. (Note that the units of δd are volume−1.) Then the peridynamic
equation of motion in the form (8), after carrying out the integration over
x′, implies

Miü(Xi, t) =
∑

j

Fji(t), i = 1, 2, . . . , N, (20)

which shows that this peridynamic model of a system of interacting discrete
particles follows Newton’s second law.

Homogenization procedures, as well as representation of the mass den-
sity in terms of probability measures, provide ways of converting the set
of discrete particles described by (19) into a more conventional continuum
(with continuous density) within the peridynamic framework. Simple ex-
amples of such methods are given in [3]. This reference also shows how to
construct a peridynamic representation of a system of discrete particles in
which the particle positions are characterized through probability density
functions. In this case, the probability density functions deform along with
the continuum. The probabilistic characterization of particle positions al-
lows the resulting peridynamic model to explicitly include the changes in
the elastic energy of the system due to random motions. For example, in
a Lennard-Jones crystal, the random fluctuations in position couple with
nonlinearities in the interatomic potential, increasing the elastic energy over
what it would be without the fluctuations. This type of effect is largely
responsible for thermal stress in solids.

3 Length scales, nonlocality, and continua

What is the significance of the length scale δ in the peridynamic model, and
how should it be chosen? As noted in [1], for any δ > 0, the parameters
in a peridynamic constitutive model can be chosen to match the bulk elas-
tic properties of a material. So, if the only requirement for a peridynamic
constitutive model is to reproduce the bulk properties, then δ is essentially
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arbitrary. (This flexibility in choosing δ is of crucial importance in the devel-
opment starting in Section 7 below.) The same is true of model parameters
related to damage: for any δ, these can be chosen to reproduce the en-
ergy release rate of a material [4]. Regardless of the exact value of δ, the
peridynamic equations retain their applicability on crack tips and surfaces.
If it is additionally required to reproduce effects controlled by small-scale
behavior, such as dispersion curves, then δ must be chosen to reflect the rel-
evant physical length scale [5, 6, 7]. An example of a physically determined
length scale is the spacing of aggregate in concrete; Bazant has shown that
a suitable nonlocal model for concrete has advantages over a homogenized
local model in the prediction of damage and localization [8]. A peridynamic
approach to fracture in concrete is described by Gerstle, Sau, and Silling [9].
If the peridynamic model is used to represent atomic-scale interactions, as
in (19), then the relevant δ would be the cut-off distance for the interatomic
potential. Techniques are under development for scaling up peridynamic
models derived from small-scale physics to use larger values of δ that are
more convenient for macroscale modeling [3].

Is it important to include a length scale in a continuum theory? To
explore this question, we examine the relevant assumptions in the classical
theory and compare them with the physical nature of matter and techno-
logical needs. In this paper, the term separated force means a force that
acts directly between continuum body-points or discrete particles separated
from each other by a finite distance. The physical origin of these forces is
not of immediate concern; they could be electrostatic, quantum mechanical,
or other. With this definition, because of the finiteness of atoms, all forces
within a real physical body are evidently separated, although the actual
length scale involved in the physical interactions can vary widely.

We use the term strongly nonlocal to describe a mathematical continuum
model that includes separated forces explicitly. The peridynamic model is
strongly nonlocal. The classical model of solid mechanics is, in contrast,
local. This term is often thought of as meaning that “the stress depends on
the deformation only through the first spatial derivatives.” However, there
are additional aspects of locality that are inconsistent with the nature of
forces in real materials.

For example, consider a continuous body B, and imagine a plane P
through its interior that divides the body into open subregions B+ and B−.
In the classical theory, it is assumed that the force exerted by B− on B+∪P
is applied on the plane P itself. Therefore, in the classical view, internal
forces are assumed to be contact forces. Truesdell [10] cites the cut principle
of Euler and Cauchy as the origin of this assumption.

Is the assumption of contact forces in a continuum a good enough ap-
proximation for all purposes? One case in which it is apparently not good
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enough is when the geometrical scale of the problem is comparable to the
length scale of the forces. Such cases arise in modeling small structures, a
situation that is becoming quite common in many technological applications.
A striking example is the atomic force microscope (AFM), in which mechan-
ical forces between a probe tip and a sample are measured and interpreted
to reveal images of individual atoms on the sample surface, with a length
scale on the order of 0.4nm [11]. The length scales that characterize these
forces in the AFM are on the same order as the geometry of the structures
involved. Similar considerations apply to the mechanics of biological mate-
rials. For example, the mechanical force between two individual biological
molecules can be measured directly as a function of distance between them
out to distances exceeding 100nm [12, 13]. Nanoscale structures are also
being designed at length scales on the order of interatomic distances, thus
requiring the analysis of forces whose interaction distance is of the same
magnitude.

Even in problems with larger geometrical length scales, it may be im-
portant to treat internal forces within a continuous body as separated forces
rather than as contact forces. The reason is that geometrically small fea-
tures within a material can have an influence over greater distances than
their own length scale or the apparent length scale of the forces involved.
Maranganti and Sharma [14] have estimated the length scales at which the
classical model of elasticity breaks down for some real materials. They report
that in many materials, the length scale relevant to forces that determine
the bulk properties of materials far exceeds the interatomic spacing. This is
particularly true of heterogeneous materials.

Israelachvili [15] demonstrates that the effects of physical forces between
bodies on the colloidal length scale drops off much more slowly than would
be suggested just by considering the underlying interatomic force. For exam-
ple, the van der Waals force between two atoms separated by a distance r is
roughly proportional to r−6. Yet the van der Waals force between two paral-
lel cylinders varies with d−3/2, where d is the separation distance. Thus, the
net force between the cylinders drops off much more slowly than underlying
interatomic force as the cylinders are moved apart. The closely related phe-
nomenon of surface tension is another example of separated forces having
an important effect at the macroscale; it is also an effect that is not easily
incorporated into the classical equations of continuum mechanics.

Regardless of the size of a body, a motion may create its own length
scale as it evolves. The classic example of this is fracture, in which the
global mechanics of the problem are dictated by what happens in a process
zone much smaller than the overall geometretic features of the body. It has
been demonstrated through molecular dynamics simulations that certain
aspects of fracture, including the role of dislocations, can be understood
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using interatomic forces acting across finite distances [16]. Eringen, Speziale,
and Kim [17] showed that nonlocality in a continuum model has a major
effect on the predicted crack tip field in an elastic lattice.

It has been shown by Irving and Kirkwood [18], Noll [19], Hardy [20],
Murdoch [21] and others that for a system of discrete particles interacting
through a central potential, it is possible to define a tensor field S such that
the classical equation of motion

ρü = ∇ · S + b (21)

is satisfied, where ρ, u, and b are statistically defined quantities representing
continuum notions of density, displacement, and body force density respec-
tively. However, the fact that (21) holds for such an S does not justify the
assumption of contact forces with a continuous body. On the contrary, it un-
dermines this assumption, because the tensor field S is found to be strongly
nonlocal. It also contradicts the assumption that the internal forces at a
body-point depend only on the first spatial derivatives of the motion. At
the end of Section 8, we will return to the question of how accurate the
classical model is in the presence of separated forces.

4 Objective

From all of the above considerations, one is led to the conclusion that a
continuum model that permits a finite length scale for force interactions
could potentially be highly relevant to current trends in technology. The
peridynamic model treats all forces as separated, thus avoiding the need to
assume contact forces. It also avoids the use of the spatial derivatives of
the motion, allowing the modeling of motions that are less than classically
smooth, including cracks.

The purpose of this paper is to demonstrate the convergence of the peri-
dynamic model to the classical theory of continuum mechanics, and to state
the conditions under which this convergence is obtained. In this sense, to
the extent that the peridynamic model adequately represents all the rele-
vant separated forces in a real system, these results provide a clarification
of the conditions under which the classical theory is applicable. It does this
by showing that the equations of the classical theory are recovered in the
sense of a limit as the length scale for interactions approaches zero.

The results obtained include the classical equation of motion (a par-
tial differential equation) and a local material model that, for any x ∈ B,
depends only on the first spatial derivatives of the motion at x. The conver-
gence of the peridynamic model to the classical model does not depend on
the assumption central force interactions. The limiting (local) constitutive
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model is therefore not restricted to a Poisson ratio of 1/4, which is implied
by central forces in an isotropic solid.

To demonstrate the convergence of the peridynamic to the classical
model, the equation of motion (1) is expressed in terms of the peridynamic
stress tensor field resulting in a PDE that is formally identical to the classical
equation of motion [23]. The elastic material model is parameterized by the
length scale δ in such a way that the bulk properties of the material under
homogeneous deformation are independent of δ. Subject to the assumptions
of sufficient smoothness of the motion and of the constitutive model, it is
then shown that in the limit of small δ, the peridynamic stress tensor field
approaches a limit ν0 that is a differentiable function of x, thus supplying
an admissible Piola-Kirchhoff stress tensor field in the classical formulation
of the equation of motion. This Piola-Kirchhoff stress tensor is a function
of the local deformation gradient tensor.

We further show that the functional Lu approaches ∇ · ν0, where ∇·
denotes the divergence operator. The Cauchy stress tensor corresponding
to ν0 is symmetric whenever the underlying peridynamic constitutive model
T̂ satisfies the appropriate condition for balance of angular momentum.
Isotropy and objectivity of ν0 also hold whenever T̂ has these properties.

Convergence of the peridynamic equations in the limit of small δ, as well
as other important results related to well-posedness and uniqueness, was
established by Emmrich and Weckner [22] for the special case of a linear,
isotropic material within the bond-based version of the peridynamic theory.
This version differs from the more general state-based theory considered in
the present paper. In the bond-based theory, internal forces within a body
occur only due to central force interactions along bonds, and each bond
responds independently of all the others. One implication of the bond-based
theory is that the bulk properties of a linear isotropic microelastic material
necessarily have a Poisson ratio of 1/4. The development in [22] relies on
the linearity of the problem. In contrast, the present paper takes a more
direct approach that exploits the peridynamic stress tensor [23] and is more
generally applicable to nonlinear constitutive models and large motions.

5 Peridynamic states

Consider a body-point x in a peridynamic body B, and let the horizon be
δ > 0. Let the family of x, denoted H, be the closed neighborhood in B of
radius δ with center x. For any x′ ∈ H, the vector x′ − x is called a bond.

A state of order m is a mapping that associates with each bond ξ ∈ H a
tensor of order m denoted A〈ξ〉. A state A is defined when A〈ξ〉 is defined
for every ξ ∈ H. A state of order 0 is called a scalar state, a state of order
1 is called a vector state, and a state of order 2 is called a tensor state. The

11



set of all vector states is denoted V. The peridynamic theory uses vector
states as the fundamental quantities for purposes of describing the motion
and internal forces near a body-point. Therefore, the role of vector states
in the peridynamic theory is similar to that of second order tensors in the
classical theory.

A number of notational conveniences have been introduced in [2] for ma-
nipulating states. Some of the more important notation for present purposes
is summarized below. In the following, A and B are vector states, and C is
a second order tensor.

The product CA is a vector state defined by

(CA)〈ξ〉 = C(A〈ξ〉) ∀ξ ∈ H. (22)

The dot product of two vector states is defined by

A •B =
∫
H

A〈ξ〉 ·B〈ξ〉 dVξ (23)

where the symbol · denotes the usual Cartesian scalar product of two vectors
in R3. Expressed in component form, the dot product of two vector states
is written as

A •B =
∫
H

Ai〈ξ〉Bi〈ξ〉 dVξ

where the Ai〈ξ〉 are the components of A〈ξ〉 in an orthonormal basis, and
where the summation convention is in effect. The composition A ◦B of two
vector states is a vector state defined by

(A ◦B)〈ξ〉 = A〈B〈ξ〉〉 ∀ξ ∈ H.

A useful quantity is the identity vector state X defined by

X〈ξ〉 = ξ ∀ξ ∈ H. (24)

Observe that
(CX)〈ξ〉 = Cξ ∀ξ ∈ H,

therefore CX is essentially the same linear transformation as C expressed
in the form of a vector state. (But recall that not all vector states represent
linear transformations.) Also note that

A ◦X = X ◦A = A.

Now we review some properties of functions of states (see [2] for more
details). Suppose Ψ(·) : V → R is a scalar valued function of a vector state
A. For any differential dA, let dΨ be defined by

dΨ = Ψ(A + dA)−Ψ(A).
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If there exists a vector state valued function ∇Ψ(·) such that

dΨ = ∇Ψ(A) • dA (25)

for any A and dA, then ∇Ψ is called the Frechet derivative of Ψ, and
Ψ is said to be differentiable. Geometrically, the Frechet derivative of Ψ
can be thought of as the state whose “direction” results in the maximum
incremental change in Ψ, thus providing an infinite-dimensional analogue of
the familiar directional derivative of a function on R3.

If Ψ(·) is a state-valued function of a vector state A, then its Frechet
derivative∇Ψ〈·, ·〉 is a rank 2 state field, which means simply that it operates
on two bonds rather than one. In this case we alter the notation for the dot
product so that the Frechet derivative is defined by

dΨ〈ξ〉 = (∇Ψ • dA)〈ξ〉 =
∫
H
∇Ψ〈ξ, ξ′〉dA〈ξ′〉 dVξ′ ∀ξ ∈ H.

for any differential vector state dA. ∇Ψ has one higher order than Ψ as
well as one higher rank. Thus, if Ψ is a vector state valued function, then
∇Ψ is a tensor state valued function, and we write

dΨi〈ξ〉 =
∫
H

(∇Ψ〈ξ, ξ′〉)ijdAj〈ξ′〉 dVξ′ . (26)

The following notational convenience will be adopted in the remainder of
this paper: if a and b are vectors and D is a tensor of order 3, then the
quantities Da and Dab are defined through components in an orthonormal
basis according to

(Da)ij = Dijkak, (Dab)i = Dijkajbk.

6 Peridynamic stress tensor

Previous results [23] have shown that the peridynamic equation of motion
(1) expressed in the form

ρ(x)ü(x, t) =
∫
B
f(x′,x, t) dVx′ + b(x, t), (27)

where f is the dual force density, is equivalent to the following partial dif-
ferential equation:

ρ(x)ü(x, t) = ∇ · ν(x, t) + b(x, t) (28)

where the symbol ∇· denotes the divergence operator. Here, ν is the peri-
dynamic stress tensor field defined by

ν(x, t) =
1
2

∫
S

∫ δ

0

∫ δ

0
(y + z)2 f(x + ym,x− zm, t)⊗m dz dy dΩm (29)
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where ⊗ denotes the dyadic product of two vectors: (a ⊗ b)ij = aibj . S
is the unit sphere, and dΩm is a differential solid angle in the direction of
any unit vector m, which is the dummy variable of integration in the outer
integral. (As noted in [23], (29) can be obtained from related expressions in
[19].) If f is given by (7), then it satisfies (9). (Recall from (16) that this
ensures balance of linear momentum in the peridynamic model.) Combining
(7), (9), and (29) allows the peridynamic stress tensor to be written as

ν(x, t) =
∫
S

∫ δ

0

∫ δ

0
(y + z)2 T[x− zm, t]〈(y + z)m〉 ⊗m dz dy dΩm. (30)

T appears only once in this expression, rather than twice as in (7), because
both terms turn out to be equal after evaluating the triple integral. In
the following sections, the peridynamic stress tensor field given by (30),
under suitable parameterization of the constitutive model, will be shown to
converge to an admissible Piola-Kirchhoff stress tensor field in the classical
theory, provided the motion and constitutive model are sufficiently smooth.

7 Parameterization of an elastic peridynamic ma-
terial model

This paper will be concerned with elastic peridynamic materials as described
in [2]:

T = T̂(Y) = ∇Ŵ (Y) ∀Y ∈ V. (31)

(In the remainder of this paper, T and T̂ represent the same force state, but
the latter denotes a function of Y, while the former denotes particular values
of this function.) As shown in [2], peridynamic elastic materials have many
of the same properties as elastic materials in the classical theory, including
the reversible storage of energy supplied by external loads.

A key consideration in the process of shrinking the horizon to zero is that
the bulk properties of the material should be unchanged during this process.
To ensure this, a family of strain energy density functions parameterized
by the horizon will be defined such that all these functions have the same
response under homogeneous deformation.

Let an elastic material model be given with horizon δ0 and strain energy
density function Ŵ ; thus the force state is provided by (31). This reference
horizon δ0 will be held fixed throughout the remaining discussion. Consider
a family of peridynamic elastic materials parameterized by variable horizon
δ, and define

s = δ/δ0,
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so the shrinkage process means taking the limit as s → 0. Let the strain
energy density functions in this family of materials be given by

Ŵ s(Y) = Ŵ (Es(Y)) ∀Y ∈ V (32)

where Es(Y) is the enlarged deformation state defined by

Es(Y)〈ξ〉 = s−1Y〈sξ〉 ∀ξ ∈ H, ∀Y ∈ V (33)

(Figure 1). To help provide a geometrical interpretation of Es(Y), consider
its value if the motion happens to be homogeneous with deformation gradient
tensor F. In this case, by (4), Y〈ξ〉 = Fξ; hence from (33),

Es(Y)〈ξ〉 = s−1Y〈sξ〉 = s−1Fsξ = Y〈ξ〉.

Thus, for any s < 1, Es(Y) provides a view of the motion “through a
microscope” such that stretches of short bonds are unchanged in the enlarged
view.

To derive T̂
s

from (32), consider a differential increment dY in the de-
formation state, and apply (31) and the defining relation of the Frechet
derivative (25):

dW s = T̂
s
(Y) • dY = T̂(Es(Y)) • dEs(Y).

From this, (33), and the definition of the dot product for vector states (23),∫
Hs

Ts〈ζ〉 · dY〈ζ〉 dVζ =
∫
H

T〈ξ〉 · s−1dY〈sξ〉 dVξ

where Hs is a sphere of radius δ = sδ0, Ts = T̂
s
(Y), and T = T̂(Es(Y)).

Changing the dummy variable of integration on the left side from ζ to sξ
results in ∫

H
Ts〈sξ〉 · dY〈sξ〉 (s3dVξ) =

∫
H

T〈ξ〉 · s−1dY〈sξ〉 dVξ,

hence ∫
H

(
Ts〈sξ〉 − s−4T〈ξ〉

)
· dY〈sξ〉 dVξ = 0. (34)

Since (34) holds for any dY, it follows that

T̂
s
(Y)〈sξ〉 = s−4T̂(Es(Y))〈ξ〉 ∀ξ ∈ H, ∀Y ∈ V. (35)

To account for nonhomogeneity of a body, x will now be included explicitly
in the constitutive model: T = T̂(Y,x).
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8 Convergence of the peridynamic stress field

A given motion y is assumed, independent of s. The following assumptions
will be made that permit a meaningful comparison between the classical and
peridynamic models:

(i) The motion y is a twice continuously differentiable function of x and
t.

(ii) The constitutive model T̂(Y,x) is a continuously differentiable func-
tion of Y and x.

Let F denote the usual deformation gradient tensor field,

F(x, t) =
∂y
∂x

(x, t) ∀x ∈ B, t ≥ 0. (36)

In the following discussion, the time variable t will be omitted to make the
notation more concise. Assumption (i) immediately implies

Y[x]〈ξ〉 = F(x)ξ + O(|ξ|2) ∀ξ ∈ H. (37)

Consider the behavior of Y near some x. For any increment ∆x, define ∆Y
by

∆Y = Y[x + ∆x]−Y[x]. (38)

Using assumption (i), (4) and (38) imply

∆Y〈ξ〉 = y(x + ∆x + ξ)− y(x + ∆x)− y(x + ξ) + y(ξ). (39)

Suppose both of the following hold:

∆x = O(s), ξ = O(s). (40)

Expanding each of the y terms in (39) as a Taylor series with remainder,
using (36) and (40), yields

∆Y〈ξ〉 = (∇xF(x))∆xξ + O(s3) or ∆Y i〈ξ〉 = Fij,k(x)∆xjξk + O(s3).
(41)

The notation Fij,k = ∂Fij/∂xk is used in (41).
Now consider the limiting behavior of the peridynamic stress tensor

νs(x) as s becomes small. From (30),

νs(x) =
∫
S

∫ sδ0

0

∫ sδ0

0
(y+z)2 T̂

s
(Y[x−zm],x−zm)〈(y+z)m〉⊗m dz dy dΩm.

(42)
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Using (35) and the change of dummy variables y → sy and z → sz,

νs(x) =
∫
S

∫ δ0

0

∫ δ0

0
(sy + sz)2

(
s−4T̂(Es(Y[x− szm]),x− szm)〈(y + z)m〉

)
⊗m (sdz) (sdy) dΩm

=
∫
S

∫ δ0

0

∫ δ0

0
(y + z)2T̂(Es(Y[x− szm]),x− szm)〈(y + z)m〉

⊗m dz dy dΩm. (43)

Now observe that by assumption (i) and equations (33), (37), (38), and (41)
with ∆x = −szm, we have that for any ξ ∈ H,

Es(Y[x− szm])〈ξ〉 = s−1Y[x− szm]〈sξ〉
= s−1 (Y[x]〈sξ〉+ ∆Y〈sξ〉)
= s−1

(
Y[x]〈sξ〉+ (∇xF(x))(−szm)(sξ) + O(s3)

)
= s−1

(
Y[x]〈sξ〉+ O(s2)

)
= s−1

(
F(x)sξ + O(s2)

)
= F(x)ξ + O(s). (44)

From (44),
Es(Y[x− szm]) = F(x)X + O(s) (45)

where X is the identity vector state defined in (24). To further simplify the
integrand in (43), use (45) and assumption (ii) to yield

T̂(Es(Y[x− szm]),x− szm)〈(y + z)m〉
= T̂(F(x)X + O(s),x− szm)〈(y + z)m〉
= T̂(F(x)X,x)〈(y + z)m〉+ O(s). (46)

From (43) and (46),

νs(x) =
∫
S

∫ δ0

0

∫ δ0

0
(y + z)2T̂(F(x)X,x)〈(y + z)m〉 ⊗m dz dy dΩm + O(s)

=
∫
S

∫ δ0

0

∫ δ0

z
p2T̂(F(x)X,x)〈pm〉 ⊗m dp dz dΩm + O(s) (47)

where the change of variables p = y + z has been used. The upper limit of
integration on the integral over p is shown as δ0 instead of δ0 + z because of
(3).
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Using Lemma 1 (see Appendix) in (47) with g(p) = p2T̂(F(x)X,x)〈pm〉,
it follows that

νs(x) =
∫
S

∫ δ0

0
p3T̂(F(x)X,x)〈pm〉 ⊗m dp dΩm + O(s)

=
∫
H
|p| T̂(F(x)X,x)〈p〉 ⊗m dVp + O(s)

=
∫
H

T̂(F(x)X,x)〈p〉 ⊗ p dVp + O(s) (48)

in which the change of variables p = pm was used, hence dVp = p2dpdΩm.
Now define the collapsed peridynamic stress tensor field ν0 by

ν0(x) =
∫
H

T̂(F(x)X,x)〈ξ〉 ⊗ ξ dVξ ∀x ∈ B. (49)

Geometrically, F(x)X represents the deformation state Y that would be
obtained by observing the motion at x “through a microscope” as suggested
by Figure 1. The discussion above has established the following proposition.

Proposition 1. Let B be an open region occupied by the reference config-
uration of an elastic peridynamic body, and let y be a motion of B. Let Ŵ
be a strain energy density function for the body with horizon δ0, and let T̂
be the corresponding constitutive model derived from (31). Suppose that
assumptions (i) and (ii) are satisfied. Let a family of constitutive models
parameterized by horizon δ = sδ0 be given by (32) for any s > 0. Let νs be
the corresponding family of peridynamic stress tensor fields defined by (42).
Then

lim
s→0

νs = ν0 on B

where ν0 is the tensor field defined by (49).

The condition stated in Proposition 1 that B is an open set is required so
that for sufficiently small s, the neighborhood of radius s centered at any
x ∈ B is contained in B. This is needed for statements such as (37) to be
true. Proposition 1 still holds if assumption (i) is replaced by the weaker
assumption that y is a continuously differentiable function of x. However,
the stronger assumptions will be needed for subsequent results below. The
following proposition follows immediately from (49) and assumptions (i) and
(ii):

Proposition 2. Under the conditions of Proposition 1, ν0 is a continuously
differentiable function of x.
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At this point, we briefly return to the question raised in Section 3 of
whether the classical model is accurate when separated forces are present.
Although this is a complicated question, one way to approach it is recast it in
the following form. Suppose we have a local material model ν̂0 that has been
calibrated according to bulk material properties based on laboratory data
obtained for large specimens. Suppose we want to know how the presence
of separated forces would affect the stress field in a certain motion. Let the
interaction distance for these separated forces be sδ0 (arbitrarily set δ0 = 1),
and let the corresponding peridynamic material model, which includes the
separated forces, result in a peridynamic stress field νs.

Now we can ask how changes in s affect νs for this particular motion.
To answer this, expand out the O(s) error term in (44), then use this in (46)
and (43) to obtain

|νs(x)− ν0(x)| ∼ |∇T̂(Y)||∇xF(x)|s as s → 0. (50)

The conclusion is that for a given bulk material response, separated forces
result in changes to the stress field on the order of the second derivatives
of displacement. Because ∇xF appears in (50), this result is suggestive of
the strain gradient approach to nonlocality [24, 25, 26]. However, the peri-
dynamic stress tensor would be expected to differ significantly from a stress
tensor based on a strain gradient theory in the vicinity of a strong disconti-
nuity. It is perhaps noteworthy that the size of the body as a whole does not
appear in (50). Although this overall size might be one factor affecting ∇xF,
this gradient might also be more strongly affected by conditions within the
motion, such as localization, cracking, and the presence of interfaces. This
observation would tend to support the view expressed in Section 3 that the
classical theory is not necessarily accurate for large bodies.

9 Convergence of the divergence of the peridy-
namic stress field

Propositions 1 and 2 do not by themselves establish that the integral in
the equation of motion (1) converges to ∇ · ν0 as s → 0. However, this
convergence will now be shown directly. Let a motion y on B be given.
Define the following functional of u, parameterized by s:

Ls
u(x) =

∫
Hs

{Ts[x]〈ζ〉 −Ts[x + ζ]〈 − ζ〉} dVζ ∀x ∈ B. (51)
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(Time labels will be omitted to simplify the notation, although it is under-
stood that u can depend on time.) From (35) and (51), and setting ζ = sξ,

Ls
u(x) =

∫
H

{
s−4T[x]〈ξ〉 − s−4T[x + sξ]〈 − ξ〉

}
s3dVξ

= s−1

∫
H
{T[x]〈ξ〉 −T[x + sξ]〈 − ξ〉} dVξ (52)

where

T[x] = T̂(Es(Y[x]),x), T[x + sξ] = T̂(Es(Y[x + sξ]),x + sξ).

Setting

∆Y = Y[x + sξ]−Y[x], ∆Es = Es(Y[x + sξ])−Es(Y[x]),

it follows from (33) that
∆Es = Es(∆Y). (53)

Applying (33) again to write out ∆Es explicitly, and using (41) to approxi-
mate the result for small s, for any ξ, ξ′ ∈ H,

∆Es〈ξ′〉 = s−1∆Y〈sξ′〉
= s−1

(
(∇xF)(sξ′)(sξ) + O(s3)

)
= s(∇xF)ξ′ξ + O(s2)

or
∆Es = s(∇xFX)ξ + O(s2). (54)

(Recall from (24) that FX〈ξ′〉 = Fξ′. The identity vector state X does not
depend on x.) To evaluate the second term in the integrand in (52), use
assumptions (i) and (ii), the first two terms of a Taylor series with remainder,
and (54) to obtain

T[x + sξ] = T[x] +∇T̂ •∆Es + (∇xT̂)sξ + O(s2)

= T[x] + s(∇T̂ • (∇xFX) +∇xT̂)ξ + O(s2). (55)

The term ∇xT̂ refers to the explicit dependence of T̂(Y,x) on x due to
nonhomogeneity. Using (55) in (52) with the change of dummy variable
ξ → −ξ, applying the chain rule, and noting that the zero-order terms
T[x]〈ξ〉 and T[x]〈 − ξ〉 cancel each other when the integration is carried
out,

Ls
u(x) =

∫
H

(∇T̂ • (∇xFX) +∇xT̂)〈ξ〉ξ dVξ + O(s)

= ∇ ·
∫
H

T̂(FX,x)〈ξ〉 ⊗ ξ dVξ + O(s)

= ∇ · ν0(x) + O(s) (56)
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where ∇· denotes the divergence operator and the last step comes from (49).
This proves the following result.

Proposition 3. Under the conditions of Proposition 1,

lim
s→0

Ls
u = ∇ · ν0 on B

where Ls
u is defined by (51).

10 Constitutive model for the collapsed peridy-
namic stress tensor

Since (49) provides an expression for the collapsed peridynamic stress tensor
at x that depends only on F(x), we can now define a constitutive model for
this ν0 as follows:

ν̂0(F,x) =
∫
H

T̂(FX,x)〈ξ〉 ⊗ ξ dVξ ∀F ∈ L, ∀x ∈ B (57)

where L is the set of all second order tensors. Recall that FX is a vector
state; see (22) and (24) regarding notation.

Equation (57) is a local constitutive model in the sense that it depends
on the motion only through the deformation gradient tensor. (It can also
depend on x explicitly to reflect nonhomogeneity of the body.) As shown
by Proposition 3 and (1), the ν0 field provided by this constitutive model
describes the internal forces to which the peridynamic model converges (sub-
ject to assumptions (i) and (ii)) in the limit of small horizon. In the remain-
der of this section we consider the properties of ν̂0, in the sense of the
classical theory, with regard to angular momentum balance, isotropy, and
objectivity. The function ν̂0 will be referred to as a “stress-strain relation”
to distinguish it from a peridynamic constitutive model and to reflect its
dependence on the strain-like quantity F.

10.1 Angular momentum balance

To complete the identification of ν̂0 defined by (57) with the Piola-Kirchhoff
stress in the classical theory, we now investigate the properties of the corre-
sponding Cauchy stress defined by

τ̂ 0 =
1
J

ν̂0FT , J = detF ∀F ∈ L (58)
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where it is assumed that J 6= 0 [27]. As described in [2], a sufficient condition
for global balance of angular momentum to hold in a peridynamic body is
that the constitutive model obey∫

H
T̂(Y,x)〈ξ〉 ×Y〈ξ〉 dVξ = 0 ∀Y ∈ V, ∀x ∈ B (59)

or using components,

εijk

∫
H

T̂ j(Y,x)〈ξ〉Y k〈ξ〉 dVξ = 0 ∀Y ∈ V, ∀x ∈ B (60)

where εijk is the alternator symbol. Geometrically, the condition (59) means
that force states individually satisfy balance of angular momentum; i.e., the
forces on x due to T[x] exert no net moment.

Proposition 4. Under the conditions of Proposition 1, suppose T̂ satisfies
(59). For any x ∈ B, let ν̂0 be given by (57), and let τ̂ 0 be given by (58).
Then τ̂ 0 is symmetric on B.

Proof. Setting Y = FX in (60) and using (57) leads to

0 = εijk

∫
H

T̂ j(FX,x)〈ξ〉(FX)km〈ξ〉 dVξ

= εijk

∫
H

T̂ j(FX,x)〈ξ〉Fkmξm dVξ

= εijk

(∫
H

T̂ j(FX,x)〈ξ〉ξm dVξ

)
Fkm

= εijkν̂
0
jmFkm

= Jεijkτ̂
0
jk

so τ̂0
jk = τ̂0

kj . �

10.2 Isotropy

If Q is any orthogonal tensor, then the corresponding orthogonal state Q is
defined by

Q〈ξ〉 = Qξ ∀ξ ∈ H.

As discussed in [2], the condition for isotropy in a peridynamic body is

T̂(Y ◦Q,x) = T̂(Y,x) ◦Q ∀Y ∈ V, ∀x ∈ B (61)

for all orthogonal states Q.
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Proposition 5. Under the conditions of Proposition 1, suppose T̂ satisfies
(61). For any x ∈ B, let ν̂0 be given by (57). Then

ν̂0(FQ,x) = ν̂0(F,x)Q (62)

for all orthogonal tensors Q and all F.

Proof. For any orthogonal tensor Q and any F, using (57) and (61) and
the change of variables ξ′ = Qξ,

ν̂0(FQ,x) =
∫
H

T̂(FQX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX ◦Q,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

(T̂(FX,x) ◦Q)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX,x)〈Qξ〉 ⊗ ξ dVξ

=
∫
H

T̂(FX,x)〈ξ′〉 ⊗ (QT ξ′) dVξ′

=
(∫

H
T̂(FX,x)〈ξ′〉 ⊗ ξ′ dVξ′

)
Q

= ν̂0(F,x)Q. �

Equation (62) is the condition for isotropy of a (local) material model in the
classical theory in terms of the Piola-Kirchhoff stress [27]. So, the conclusion
is that if the peridynamic material model is isotropic, then the corresponding
ν̂0 is also isotropic in the sense of the classical theory.

10.3 Objectivity

As discussed in [2], the condition for objectivity in a peridynamic body is

T̂(Q ◦Y,x) = Q ◦ T̂(Y,x) ∀Y ∈ V, ∀x ∈ B. (63)

for all orthogonal states Q.

Proposition 6. Under the conditions of Proposition 1, suppose T̂ satisfies
(63). For any x ∈ B, let ν̂0 be given by (57). Then

ν̂0(QF,x) = Qν̂0(F,x) (64)

for all orthogonal tensors Q and all F.
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Proof. For any orthogonal tensor Q and any F, from (57) and (63),

ν̂0(QF,x) =
∫
H

T̂(QFX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

T̂(Q ◦ FX,x)〈ξ〉 ⊗ ξ dVξ

=
∫
H

(Q ◦ T̂(FX,x))〈ξ〉 ⊗ ξ dVξ

=
∫
H

QT̂(FX,x)〈ξ〉 ⊗ ξ dVξ

= Qν̂0(F,x). �

(64) is the condition for a classical constitutive model to be objective ex-
pressed in terms of the Piola-Kirchhoff stress [27]. From this result, the
conclusion is that if a peridynamic constitutive model is objective, then the
corresponding ν̂0 is also objective in the sense of the classical theory.

10.4 Hyperelasticity

In this section it will be shown that ν̂0 is derivable from a scalar valued strain
energy density function via the usual tensor gradient within the classical
theory. To do this, define the collapsed strain energy density function Ŵ 0 :
L × B → R by

Ŵ 0(F,x) = Ŵ (FX,x) ∀F ∈ L, ∀x ∈ B. (65)

where Ŵ is the peridynamic strain energy density function in (31). Denote
the tensor gradient by ∂/∂F, thus(

∂Ŵ 0

∂F

)
ij

=
∂Ŵ 0

∂Fij
. (66)

Proposition 7. Let a peridynamic elastic strain energy density function
Ŵ : V × B → R for a nonhomogeneous body B be given, and let T = ∇Ŵ ,
where ∇ denotes the Frechet derivative. Let ν̂0 be given by (57). Let Ŵ 0

be defined by (65). Then

ν̂0(F,x) =
∂Ŵ 0

∂F
(F,x) ∀F ∈ L, ∀x ∈ B. (67)

Proof. Since
(FX)k〈ξ〉 = Fkmξm,
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it follows that(
∂(FX)

∂F
〈ξ〉
)

kij

=
∂

∂Fij
(Fkmξm) = δikδjmξm = δikξj . (68)

By definition, Ŵ is differentiable (in the sense of Frechet derivatives). From
(65) and the chain rule,

∂Ŵ 0

∂F
= ∇Ŵ • ∂(FX)

∂F
.

Expressing this in component form, expanding out the dot product, and
using (68), (

∂Ŵ 0

∂F

)
ij

=
∫
H

T k〈ξ〉
(

∂(FX)
∂F

〈ξ〉
)

kij

dVξ

=
∫
H

T k〈ξ〉δikξj dVξ

=
∫
H

T i〈ξ〉ξj dVξ

= ν̂0
ij

where the final step comes from (57). �
One implication of Proposition 7 is that the collapsed peridynamic stress

tensor ν̂0 is conjugate to F, which is consistent with the properties of Piola-
Kirchhoff stress tensors in the classical theory for hyperelastic materials.

11 Discussion

The above development has shown that under the assumptions (i) and (ii),
the elastic peridynamic model converges to the classical model in the limit
of small horizon. Starting with any peridynamic strain energy function Ŵ ,
and defining a family of peridynamic materials by (32) for variable horizon
while holding the bulk properties fixed, the limiting stress tensor is provided
by (57). This is a local stress-strain relation. The stress tensor is obtainable
from the tensor gradient of the strain energy density function defined by
(65). The resulting stress field ν0 satisfies the classical equation of motion,

ρ(x)ü(x, t) = ∇ · ν0(x, t) + b(x, t). (69)

As shown in Section 10, the stress-strain relation (57) satisfies the condi-
tions on the Piola-Kirchhoff stress in the classical theory for angular momen-
tum balance, isotropy, and objectivity, provided the underlying peridynamic
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model meets these conditions. The condition δ < ∞ is not required for the
present results to hold, since a different quantity could be used to charac-
terize the changing length scale, such as the location of a maximum in the
dependence of bond force as a function of bond length.

If the assumptions (i) and (ii) fail to be satisfied, i.e., if either the mo-
tion fails to be twice continuously differentiable, or if the peridynamic con-
stitutive model fails to be continuously differentiable, then the conclusions
regarding convergence to a classical model in the limit of small horizon fail
to hold. In this case, the peridynamic equations continue to be applica-
ble at any positive horizon, but convergence properties in the limit of zero
horizon are undetermined. An example is provided by a peridynamic body
containing a crack. Since the peridynamic model does not use the spatial
derivatives of the motion, it continues to be applicable even on the crack
surface. However, because these derivatives are undefined on the crack sur-
face, expressions such as (49) cannot be used since F does not exist there.
Nevertheless, the standard form of the jump condition for momentum across
a surface of discontinuity continues to hold, even though ν0 is not defined
on the surface. In equilibrium, the applicable jump condition [28] is

(ν0
+ − ν0

−)n = 0

where n is a unit vector normal to the surface of discontinuity, and the sub-
scripts + and − refer to conditions immediately on either side of it. In ad-
dition to being consistent with this jump condition, the peridynamic model
has been proposed as a framework in which to investigate the structure and
energy balance in interfaces such as phase boundaries [29].

The present paper has been concerned with the process of starting with
a peridynamic material model and shrinking the length scale to obtain a
local model. Suppose we wish to go in the other direction? That is, sup-
pose we have an expression for a stress tensor in the classical theory and
ask whether there is a peridynamic constitutive model that is consistent
with this. This question has been investigated in [2]; equation (142) of this
reference provides the following force state for a given stress tensor σ:

T〈ξ〉 = ω〈ξ〉σ(F)K−1ξ ∀ξ ∈ H (70)

where
K =

∫
H

ω〈ξ〉ξ ⊗ ξ dVξ,

and ω is a scalar state that acts as a weighting function. The value of F to
be used in σ(F) is provided by

F =
(∫

H
ω〈ξ〉Y〈ξ〉 ⊗ ξ dVξ

)
K−1.
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In addition to providing a practical way that a given classical stress-strain
model can incorporated into the peridynamic framework, (70) allows us to
define a peridynamic version of the kinetic stress. The kinetic stress τ̃ ac-
counts for the net momentum flux due to small random velocity fluctuations
v superposed on the continuum velocity field [18]:

τ̃ = −ρv ⊗ v

where the overline denotes a statistical average of a random variable. To
incorporate the kinetic stress into the peridynamic model, first use (58) to
define the corresponding Piola-Kirchhoff stress:

ν̃ = Jτ̃F−T J = detF;

then set σ = ν̃ in (70). The result is

T̃〈ξ〉 = Jω〈ξ〉τ̃F−TK−1ξ or T̃ = Jωτ̃F−TK−1X.

By substituting T̃ into (49), one easily finds that the collapsed stress tensor
corresponding to this force state is

ν0 = ν̃. (71)

This confirms that the peridynamic version of the kinetic stress is consistent
with the local version in the limit of small horizon. The method outlined
here for incorporating the kinetic stress into the peridynamic model does
not re-examine the physical and statistical basis for the conventional view
that it essentially a local quantity, free of any length scale. However, it
appears possible that an alternative approach to the treatment of random
fluctuations might reveal some physical aspect of nonlocality in the kinetic
stress, with a length scale supplied perhaps by the mean free path, whose
importance in determining the shear viscosity of gases is widely accepted.

Modeling of physical phenomena governed by diffusion within the peri-
dynamic framework, including heat transport, is an area of current research.
Mathematical modeling of heat transport using local concepts that lead to
the standard partial differential equations causes difficulties similar to those
that occur in mechanics. For example, problems involving moving phase
boundaries, such as the Stefan problem, lead to singularities that require
special treatment within the standard theory of heat transport [30]. Other
types of singularities in heat transfer arise in technologically important prob-
lems such as the rewetting problem in nuclear reactors. In the rewetting
problem, nonmonotonicity in the relation between heat transport rate and
temperature along the surface of an internally heated, submerged rod leads
to the emergence of a moving singularity in the equations [31]. This type
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of singularity is analogous to a crack tip singularity in mechanics, because
it can imply unbounded heat flux. It therefore appears possible that a non-
local treatment of heat transport analogous to the peridynamic mechanical
model could prove to be useful in these problems.

The classical theory of elasticity is generally regarded as not having a
length scale. The results of the present paper suggest that a valid alternative
view of the classical theory is that it does have a length scale, and the value
of this length scale is zero.

Appendix

The following result is used in equation (48).

Lemma 1. Let a be a positive number, and let g : [0, a] → R be an
integrable function. Let

I(a) =
∫ a

0

∫ a

z
g(p) dp dz. (72)

Then
I(a) =

∫ a

0
pg(p) dp. (73)

Proof. Define k(z, a) =
∫ a
z g(p)dp; thus I(a) =

∫ a
0 k(z, a)dz. Differentiating

this,
dI

da
= k(a, a) +

∫ a

0

∂k

∂a
(z, a) dz = 0 +

∫ a

0
g(a) dz = ag(a).

This is a first order differential equation whose solution under the boundary
condition I(0) = 0, which is implied by (72), is given by (73). �
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Figure 1: The enlarged deformation state Es(Y) maps the part of the de-
formation state Y within the small horizon sδ0 to the original horizon δ0.
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